
Math 4200
Friday October 2  

2.3  Homotopies, simply connected domains (rigorously); antiderivatives for analytic 
functions in simply-connected domains (rigorously); the Deformation Theorem 
(rigorously).  We may not finish these notes today, but we will get close.

Announcements:   
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On Wednesday we proved the 

Rectangle Lemma Let  f : D z0; r  be analytic.  Let 
R = a, b c, d D z0, r   be a closed coordinate rectangle inside the disk.  (i.e. R

= x i y  a x b, c y d D.)  Let =  R , oriented counterclockwise.  
Then

 f z  dz = 0.

We used Goursat's subdivision argument.  If f  had been C1  we could've just used 
Green's Theorem.

Then we used the Rectangle Lemma to prove the

Local antiderivative Theorem  Let f : D z0; r  be analytic.  Then 
F : D z0; r  such that F = f  in D z0; r .
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For later (section 2.4):  The Local antiderivative Theorem also holds if 
f : D z0; r  is analytic except at a single point z1  in the disk, where it is only 
known that f  is continuous at z1 .

proof:  The rectangle lemma + f  continuous allows the construction of the 
antiderivative F .  The rectangle lemma used the analyticity of f , but if there's just a 
single point z1  where we don't have analyticity but do have that f  is continuous (hence 
also bounded), we can still prove that the rectangle lemma holds for all rectangles.  
Here's how:  Let R  be chosen.  

If z1 R , there's no problem.  (Goursat's argument only used subdivision within the 
rectangle.)

If z1  is in the interior of R  or the boundary of R , subdivide and use a limiting argument
with subrectangles and contour integral cancellations, and the boundedness of f  near z1  
to deduce the rectangle lemma:

Let 0, subdivide as indicated.  Let Rz
1
 be the  rectangle as indicated above.  

Apply the rectangle lemma on all other rectangles of the subdivision, note cancellation 
of contour integrals in the interior of R , and deduce

 R
f z  d z  = 

 Rz
1

f z  d z.

And
 

 Rz
1

f z  d z     
 Rz

1

 f z  dz   M 4 0 as 0 ,

where M  is a local bound on f z  near z1  which we have because f  is continuous at 
z1 .
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Today and Monday we define and discuss the notion of homotopies; use them to give a 
useable analysis definition of simply connected domains; and then use the local 
antiderivative theorem to prove the global antiderivative theorem for simply connected 
domains.  This theorem will follow from a more general deformation theorem that we 
also prove, about when contour integrals for an analytic function remain the same, when
an initial contour is deformed via homotopy into a final contour.  The deformation 
theorem will complement what we already know from section 3.2, about contour 
replacement.

Two (continuous) contours are homotopic in a domain if one of them can be 
continuously deformed into the other one, within the domain.  Precisely:

Def   Let A  be open and connected.  Let  0, 1 : 0, 1 A   be continuous. paths. 
Then 0  is homotopic to 1  in A  if and only if

 H : s, t  0 s 1, 0 t 1 A   continuous, such that
H 0, t = 0 t ,   0 t 1
H 1, t = 1 t ,   0 t 1

Note:  We call H  the homotopy from 0  to 1 .  The composition H 1 t, s  is then a 
homotopy from 1  to 0 .  In the definition we use the unit square as the domain for the 
homotopy, but we could use any coordinate rectangle in the s t  plane, because one can
always rescale and translate.

Example:  Find a homotopy between the unit circle and the circle of radius 3, in 
0 .  Sketch.
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Special cases of homotopies:

Def   The paths 0  and 1  are homotopic with fixed endpoints in A  if and only if  there 
are points P, Q A  with

0 0 = 1 0 = P

0 1 = 1 1 = Q 
and  homotopy H s, t = s t from the unit square to A  such that

s 0 = P   0 s 1

s 1 = Q   0 s 1

Def   The paths 0  and 1  are homotopic as closed curves  in A  if and only if 

0 0 = 0 1  and  1 0 = 1 1
and  homotopy H s, t = s t  from of closed curves from the unit square to A , i.e. 
such that

s 0 = s 1   0 s 1.
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Def  A connected open set A  is simply connected if and only if every closed curve 
: 0, 1 A  is homotopic as a closed curve to some point z0 A , i.e.

 H : 0, 1 0, 1 A   continuous, such that 
H 0, t = t ,     0 t 1
H 1, t = z0,         0 t 1

H s, 0 = H s, 1 ,     0 s 1 .

Def  A domain A  is called starshaped if and only  z0 A  such that z A  the line 
segement 1 s z s z0  0 s 1 A .

Example:  Check that if A  is starshaped, then A  is simply connected.
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Some of our favorite branched domains are star-shaped, so also are simply connected.  
By the antiderivative theorem for simply connected domains - which we are about to 
prove rigorously as opposed to the section 2.2 arguments - that means if we have 
analytic functions in start-shaped branched domains, they will have antiderivatives.

Example  0  is not simply-connected.  This is a homework problem based on a 

proof by contradiction using the function 1
z  and the antiderivative theorem for simply 

connected domains.
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Homotopy Lemma  Let A  be open and connected.  Let f : A  be analytic.  Let

S = s, t   0 s 1, 0 t 1  and
 S

denote the unit square and its boundary, oriented counterclockwise.  Let H : S A  be 
continuous, with H  S  a piecewise C1  contour.  Then

 f z  d z = 0.  

We will prove the homotopy lemma on the last page of this set of notes.  The main tool 
is the local antiderivative theorem.  The homotopy lemma is the key step for the main 
two theorems of section 2.3:
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Theorem 1  Anti derivatives for analytic functions in simply connected domains:  Let 
A  be simply connected.  Let f : A  analytic.  Then  F : A  such that F '

= f in A .

proof:  It suffices to prove that contour integrals are path independent, or equivalently 
that whenever : a, b A  is a closed piecewise C1  curve - which we can assume is 
actually parameterized on the interval 0, 1  - then 

 f z  d z = 0.  

By simple-connectivity, for such a  there is a homotopy of  to a fixed point z0 A :  
We label the sides of the unit square by the images under this homotopy.  Note that the 
closed curve condition means that if the lower directed segment is mapped to a curve , 
then the upper directed curve is mapped to .

By the homotopy lemma
0 =  f z  d z  =  f z  d z  

z0

 f z  d z  f z  d z   f z  d z =   f z  d z .

Q.E.D.

Technical note:  Since the homotopy H  is only assumed to be continuous, the curves 
,  may not be piecewise C1 , so the contour integrals over them may not exist. See 

the proof of the Homotopy Lemma to see how this is taken care of.
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Theorem 2  Deformation Theorem  Let A  be open and connected (but not 
necessarily simply connected).  Let f : A  analytic.   If the two piecewise C1curves 

0, 1  are homotopic in A , either with fixed endpoints or as closed curves, then

0

 f z  d z = 

1

 f z  d z

proof:  Use the homotopy lemma on these two diagrams.  Again, the edges of the unit 
square are labeled by their images under the homotopy:

as closedcurvesfixed
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T.tny a fi tsfuz f.x.IfYiyitf.itIIa o

DMs



proof of the homotopy lemma:  Subdivide S into n2  subsquares of side lengths n 1 .  
The dots in the diagram on the left indicate their vertices.  number the squares as you 
would a matrix, and let Sk j be a typical subsquare, with zk j be the image under the 
homotopy of its lower left corner.  Since H  is continuous and S is compact, the image 
H S A  is compact.  Write

H  S =
H  Sk  j = k j.

Replace any of the four subarcs of each k j which are not C1  with constant speed line 
segment paths between the image vertices.  

By interior cancellation,

 f z  d z = 
k, j

 

k j

 f z  d z.

Note:
1)  H S  is compact, H S A  open, so by the Positive Distance Lemma you're 
proving in this week's homework

0 such that  z H S , D z; A .
2)  H  is continuous on S so H  is uniformly continuous.  Thus for  as in (1), 

 0 such that s, t s , t H s, t H s , t .

3)  If n is large enough so that the diagonal length of the subsquares is less than , then 
each

H Sk j D zk j; A , zk j = H sk, tj .
4)  By the local antidifferentiation theorem in D zk j ; , each

k j

 f z  d z = 0   f z  d z = 0.                         Q.E.D.!!!
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